abstract
- Resistance to the glycopeptide antibiotic vancomycin requires five genes. Two of these, vanR and vanS, have sequence homology to cytoplasmic response regulatory (VanR) and transmembrane sensory (VanS) proteins of two-component regulatory systems used to sense and transduce environmental signals. We report the overproduction and purification to homogeneity of VanR (27 kDa) and of a fusion protein of VanS (residues 95-374, the cytosolic domain) to the maltose binding protein (MBP), yielding a MBP-VanS protein of 76 kDa. The MBP-VanS fusion protein displayed an ATP-dependent autophosphorylation on a histidine residue with a rate of 0.17 min-1 and a phosphorylation stoichiometry of 10-15%. 32P-PhosphoMBP-VanS transferred the phosphoryl group to VanR. 32P-Phospho VanR showed chemical stability anticipated for an aspartyl phosphate and was relatively stable to hydrolysis (t1/2 = 10-12 h). Thus, the vancomycin resistance operon appears to have collected and specifically tailored the His kinase and Asp phosphoryl receptor of two-component signal transduction logic for sensing extracellular vancomycin and turning on structural genes, vanA and vanH, to make altered peptidoglycan structures such that vancomycin does not bind.