α-Mannosidase 2C1 attenuates PTEN function in prostate cancer cells Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • PTEN dephosphorylates the 3-position phosphate of phosphatidylinositol 3,4,5 triphosphate (PIP(3)), thereby inhibiting AKT activation. Although attenuation of PTEN function has a major role in tumourigenesis, the underlying mechanisms remain unclear. Here we show that α-mannosidase 2C1 (MAN2C1) inhibits PTEN function in prostate cancer (PC) cells and is associated with a reduction in PTEN function in primary PC. MAN2C1 activates AKT and promotes the formation of PTEN-positive DU145 cell-derived xenograft tumours by imparing endogenous PTEN function. In 659 PC patients who were examined, ~60% of tumours were PTEN positive with elevated AKT activation. Of these, 80% display MAN2C1 overexpression that co-localizes with PTEN. Increases in MAN2C1 were detected only in PTEN-positive prostatic intraepithelial neoplasia and carcinomas, and showed a significant association with PC recurrence only in patients with PTEN-positive PCs. Mechanistically, MAN2C1 binds PTEN thereby inhibiting its PIP(3) phosphatase activity. These findings show that MAN2C1 function as a PTEN-negative regulator in PC cells.

publication date

  • September 2011

has subject area