Lipid mediator serum profiles in asthmatics significantly shift following dietary supplementation with omega-3 fatty acids
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
SCOPE: In contrast to well-characterized PUFA levels in serum, little is known regarding their downstream metabolic products. However, many of these compounds are lipid mediators with prominent roles during pro- and antiinflammatory processes. METHODS AND RESULTS: In this double blind crossover study on asthmatics, shifts in serum levels of ω-3 and ω-6 PUFA-derived oxidized fatty acids (e.g. eicosanoids, oxylipins) were quantified following dietary fish oil supplementation. Serum was obtained from subjects following fasting at three occasions; (i) prior to supplementation, (ii) following a 3-week supplement intake of either placebo or fish oil, and (iii) following a 3-week washout period with a subsequent 3-week period of either fish oil or placebo supplement. A total of 87 oxylipins representing cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) metabolic pathways were screened via LC-MS/MS. The primary alterations observed were in CYP- and 15-LOX-derived EPA- and CYP-derived DHA oxylipins. CONCLUSION: The results indicate that intake of an ω-3 rich diet alters not only the PUFA ratio, but also the ratio of downstream oxylipins. These data further support that dietary manipulation with ω-3 PUFAs affects not only PUFA levels, but importantly also the downstream metabolic profile.