Glycogen Synthase Kinase 3α Deficiency Attenuates Atherosclerosis and Hepatic Steatosis in High Fat Diet–Fed Low Density Lipoprotein Receptor–Deficient Mice
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Studies have implicated signaling through glycogen synthase kinase (GSK) 3α/β in the activation of pro-atherogenic pathways and the accelerated development of atherosclerosis. By using a mouse model, we examined the role of GSK3α in the development and progression of accelerated atherosclerosis. We crossed Gsk3a/GSK3α-knockout mice with low-density lipoprotein receptor (Ldlr) knockout mice. Five-week-old Ldlr(-/-);Gsk3a(+/+), Ldlr(-/-);Gsk3a(+/-), and Ldlr(-/-);Gsk3a(-/-) mice were fed a chow diet or a high-fat diet for 10 weeks and then sacrificed. GSK3α deficiency had no detectible effect on any measured parameters in chow-fed mice. High-fat-diet fed Ldlr(-/-) mice that were deficient for GSK3α had significantly less hepatic lipid accumulation and smaller atherosclerotic lesions (60% smaller in Ldlr(-/-);Gsk3a(+/-) mice, 80% smaller in Ldlr(-/-);Gsk3a(-/-) mice; P < 0.05), compared with Ldlr(-/-);Gsk3a(+/+) controls. GSK3α deficiency was associated with a significant increase in plasma IL-10 concentration and IL-10 expression in isolated macrophages. A twofold to threefold enhancement in endoplasmic reticulum stress-induced IL-10 expression was observed in Thp-1-derived macrophages that were pretreated with the GSK3α/β inhibitor CT99021. Together, these results suggest that GSK3α plays a pro-atherogenic role, possibly by mediating the effects of endoplasmic reticulum stress in the activation of pro-atherogenic pathways.