The purified myxoma virus gamma interferon receptor homolog M-T7 interacts with the heparin-binding domains of chemokines Journal Articles uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • The myxoma virus T7 protein M-T7 is a functional soluble gamma interferon receptor homolog that has previously been shown to bind gamma interferon and inhibit its antiviral activities in a species-specific manner, but gene knockout analysis has suggested a further role for M-T7 in blocking leukocyte influx into infected lesions. We purified M-T7 to apparent homogeneity and showed that M-T7 is an N-linked glycoprotein that appears to be a stable homotrimer with a molecular mass of approximately 113 kDa in solution. M-T7, in addition to forming inhibitory complexes with rabbit gamma interferon, was also shown to bind to human interleukin-8, a prototypic member of the chemokine superfamily. Moreover, M-T7 was able to interact promiscuously with all members of the CXC, CC, and C chemokine subfamilies tested. Binding of human RANTES to M-T7 can be competed by rabbit gamma interferon and also by cold RANTES competitor with a 50% inhibitory concentration of 900 nM. Although M-T7 retains binding to a number of interleukin-8 N-terminal (ELR) deletion mutants, binding to mutants containing deletions in the C-terminal heparin-binding domain of interleukin-8 is abrogated. Furthermore, heparin effectively competes the interaction of M-T7 with the chemokine RANTES but not with rabbit gamma interferon. We propose that this novel M-T7 interaction with members of the chemokine superfamily may be facilitated through the conserved heparin-binding domains found in a wide spectrum of chemokines and that M-T7 may function by modulating chemokine-glycosaminoglycan interactions in virus-infected tissues.


  • Lalani, AS
  • Graham, K
  • Mossman, Karen
  • Rajarathnam, K
  • Clark-Lewis, I
  • Kelvin, D
  • McFadden, G

publication date

  • June 1997