The Loss of Topography in the Microbial Communities of the Upper Respiratory Tract in the Elderly Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • RATIONALE: The microbial communities inhabiting the upper respiratory tract protect from respiratory infection. The maturity of the immune system is a major influence on the composition of the microbiome and, in youth, the microbiota and immune system are believed to mature in tandem. With age, immune function declines and susceptibility to respiratory infection increases. Whether these changes contribute to the microbial composition of the respiratory tract is unknown. OBJECTIVES: Our goal was to determine whether the microbes of the upper respiratory tract differ between mid-aged adults (18-40 yr) and the elderly (>65 yr). METHODS: Microbiomes of the anterior nares and oropharynx of elderly individuals were evaluated by 16S rRNA gene sequencing. These communities were compared with data on mid-aged adults obtained from the Human Microbiome Project. MEASUREMENTS AND MAIN RESULTS: The microbiota of the elderly showed no associations with sex, comorbidities, residence, or vaccinations. Comparisons of mid-aged adults and the elderly demonstrated significant differences in the composition of the anterior nares and oropharynx, including a population in the anterior nares of the elderly that more closely resembled the oropharynx than the anterior nares of adults. The elderly oropharyngeal microbiota were characterized by increased abundance of streptococci, specifically, Streptococcus salivarius group species, but not Streptococcus pneumoniae, carriage of which was low (<3% of participants), as demonstrated by PCR (n = 4/123). CONCLUSIONS: Microbial populations of the upper respiratory tract in mid-aged adults and the elderly differ; it is possible that these differences contribute to the increased risk of respiratory infections experienced by the elderly.

publication date

  • May 2014