Three rhamnosyltransferases responsible for assembly of the A-band D-rhamnan polysaccharide in Pseudomonas aeruginosa: a fourth transferase, WbpL, is required for the initiation of both A-band and B-band lipopolysaccharide synthesis Academic Article uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • The Pseudomonas aeruginosa A-band lipopolysaccharide (LPS) molecule has an O-polysaccharide region composed of trisaccharide repeat units of alpha1-->2, alpha1-->3, alpha1-->3 linked D-rhamnose (Rha). The A-band polysaccharide is assembled by the alpha-D-rhamnosyltransferases, WbpX, WbpY and WbpZ. WbpZ probably transfers the first Rha residue onto the A-band accepting molecule, while WbpY and WbpX subsequently transfer two alpha1-->3 linked Rha residues and one alpha1-->2 linked Rha respectively. The last two transferases are predicted to be processive, alternating in their activities to complete the A-band polymer. The genes coding for these transferases were identified at the 3' end of the A-band biosynthetic cluster. Two additional genes, psecoA and uvrD, border the 3' end of the cluster and are predicted to encode a coenzyme A transferase and a DNA helicase II enzyme respectively. Chromosomal wbpX, wbpY and wbpZ mutants were generated, and Western immunoblot analysis demonstrates that these mutants are unable to synthesize A-band LPS, while B-band synthesis is unaffected. WbpL, a transferase encoded within the B-band biosynthetic cluster, was previously proposed to initiate B-band biosynthesis through the addition of Fuc2NAc (2-acetamido-2,6-dideoxy-D-galactose) to undecaprenol phosphate (Und-P). In this study, chromosomal wbpL mutants were generated that did not express A band or B band, indicating that WbpL initiates the synthesis of both LPS molecules. Cross-complementation experiments using WbpL and its homologue, Escherichia coli WecA, demonstrates that WbpL is bifunctional, initiating B-band synthesis with a Fuc2NAc residue and A-band synthesis with either a GlcNAc (N-acetylglucosamine) or GalNAc (N-acetylgalactosamine) residue. These data indicate that A-band polysaccharide assembly requires four glycosyltransferases, one of which is necessary for initiating both A-band and B-band LPS synthesis.


  • Rocchetta, Heather L
  • Burrows, Lori
  • Pacan, Jennifer C
  • Lam, Joseph S

publication date

  • June 1998

has subject area