Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Vancomycin resistance in Enterococcus faecium BM4147 is mediated by vancomycin resistance proteins VanA and VanH. VanA is a D-alanine:D-alanine ligase of altered substrate specificity [Bugg, T. D. H., Dutka-Malen, S., Arthur, M., Courvalin, P., & Walsh, C. T. (1991) Biochemistry 30, 2017-2021], while the sequence of VanH is related to those of alpha-keto acid dehydrogenases [Arthur, M., Molinas, C., Dutka-Malen, S., & Courvalin, P. (1991) Gene (submitted)]. We report purification of VanH to homogeneity, characterization as a D-specific alpha-keto acid dehydrogenase, and comparison with D-lactate dehydrogenases from Leuconostoc mesenteroides and Lactobacillus leichmanii. VanA was found to catalyze ester bond formation between D-alanine and the D-hydroxy acid products of VanH, the best substrate being D-2-hydroxybutyrate (Km = 0.60 mM). The VanA product D-alanyl-D-2-hydroxybutyrate could then be incorporated into the UDPMurNAc-pentapeptide peptidoglycan precursor by D-Ala-D-Ala adding enzyme from Escherichia coli or by crude extract from E. faecium BM4147. The vancomycin binding constant of a synthetic modified peptidoglycan analogue N-acetyl-D-alanyl-D-2-hydroxybutyrate (Kd greater than 73 mM) was greater than 1000-fold higher than the binding constant for N-acetyl-D-alanyl-D-alanine (Kd = 54 microM), partly due to the disruption of a hydrogen bond in the vancomycin-target complex, thus providing a molecular rationale for high-level vancomycin resistance.