Solution Studies of Isepamicin and Conformational Comparisons between Isepamicin and Butirosin A When Bound to an Aminoglycoside 6‘-N-Acetyltransferase Determined by NMR Spectroscopy Journal Articles uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • NMR spectroscopy, combined with molecular modeling, was used to determine the conformations of isepamicin and butirosin A in the active site of aminoglycoside 6'-N-acetyltransferase-Ii [AAC-(6')-Ii]. The results suggest two enzyme-bound conformers for isepamicin and one for butirosin A. The dihedral angles that describe the glycosidic linkage between the A and B rings for the two conformers of AAC(6')-Ii-bound isepamicin were phi AB = -7.9 +/- 2.0 degrees and psi AB = -46.2 +/- 0.6 degrees for conformer 1 and phi AB = -69.4 +/- 2.0 degrees and psi AB = -57.7 +/- 0.5 degrees for conformer 2. Unrestrained molecular dynamics calculations showed that these distinct conformers are capable of interconversion at 300 K. When superimposed at the 2-deoxystreptamine ring, one enzyme-bound conformer of isepamicin (conformer 1) places the reactive 6' nitrogen in a similar position as that of butirosin A. Conformer 2 of AAC(6')-Ii-bound isepamicin may represent an unproductive binding mode. Unproductive binding modes (to aminoglycoside modifying enzymes) could provide one reason isepamicin remains one of the more effective aminoglycoside antibiotics. The enzyme-bound conformation of butirosin A yielded an orthogonal arrangement of the 2,6-diamino-2,6-dideoxy-D-glucose and D-xylose rings, as opposed to the parallel arrangement which was observed for this aminoglycoside in the active site of an aminoglycoside 3'-O-phosphotransferase [Cox, J. R., and Serpersu, E. H. (1997) Biochemistry 36, 2353-2359]. The complete proton and carbon NMR assignments of the aminoglycoside antibiotic isepamicin at pH 6.8 as well as the pKa values for it's amino groups are also reported.


  • DiGiammarino, Enrico L
  • Draker, Kari-ann
  • Wright, Gerard
  • Serpersu, Engin H

publication date

  • March 1, 1998