Synthesis and inhibitory action on HMG-CoA synthase of racemic and optically active oxetan-2-ones (β-Lactones) Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • A homologous series of both C3-unsubstituted and C3-methyl substituted oxetan-2-ones (beta-lactones) was investigated as potential inhibitors of yeast 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase. Several reported methods for racemic beta-lactone synthesis were studied for preparation of the target series. In addition, a novel aluminum-based Lewis acid obtained by combination of Et2AlCl with (1R,2R)-2-[(diphenyl)hydroxymethyl] cyclohexan-1-ol was studied for the asymmetric [2 + 2] cycloaddition of aldehydes and trimethylsilylketene. This Lewis acid exhibited good reactivity but variable enantioselectivity (22-85% ee). In in vitro assays using both native and recombinant HMG-CoA synthase from Saccharomyces cerevisiae, oxetan-2-ones mono-substituted at C4 with linear alkyl chains gave IC50s that decreased monotonically with chain length up to 10 carbons and then rose rapidly for longer chains. The trans isomers of 3-methyl-4-alkyl-oxetan-2-ones showed a similar trend but had 1.3- to 5.6-fold lower IC50s. The results imply a substantial hydrophobic pocket in this enzyme that interacts with both C-3 and C-4 substituents of oxetan-2-one inhibitors.

publication date

  • August 1998