abstract
- Telomere shortening is a major source of chromosome instability (CIN) at early stages during carcinogenesis. However, the mechanisms through which telomere-driven CIN (T-CIN) contributes to the acquisition of tumor phenotypes remain uncharacterized. We discovered that human epithelial kidney cells undergoing T-CIN display massive microRNA (miR) expression changes that are not related to local losses or gains. This widespread miR deregulation encompasses a miR-200-dependent epithelial-to-mesenchymal transition (EMT) that confers to immortalized pre-tumoral cells phenotypic traits of metastatic potential. Remarkably, a miR signature of these cells, comprising a downregulation of miRs with conserved expression in kidney, was retrieved in poorly differentiated aggressive renal cell carcinomas. Our results reveal an unanticipated connection between telomere crisis and the activation of the EMT program that occurs at pre-invasive stages of epithelial cancers, through mechanisms that involve miR deregulation. Thus, this study provides a new rational into how telomere instability contributes to the acquisition of the malignant phenotype.