Microbiota protect against frailty, loss of skeletal muscle, and maintain inflammatory tone during aging in mice. Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • View All
  •  

abstract

  • Chronic low-level inflammation or "inflammaging" is hypothesized to contribute to sarcopenia and frailty. Resident microbiota are thought to promote inflammaging, frailty, and loss of skeletal muscle mass. We tested immunity and frailty in male C57BL6/N germ-free (GF), specific-pathogen-free (SPF), and mice that were born germ-free and colonized (COL) with an SPF microbiota. Male and female GF mice had lower systemic cellular inflammation indicated by lower blood Ly6Chigh monocytes across their lifespan. Male GF mice had lower body mass, but relative to body mass, GF mice had smaller hindlimb muscles and smaller muscle fibers compared to SPF mice across the lifespan. Male and female GF mice had increased frailty at 18 months or older. Colonization of female GF mice increased blood Ly6Chigh monocytes, but did not affect frailty at 18 months or older. Colonization of male GF mice increased blood Ly6Chigh monocytes, skeletal muscle size, myofiber fiber size, and decreased frailty at 18 months or older. Transcriptomic analysis of the tibialis anterior muscle revealed a microbiota-muscle axis with over 550 differentially expressed genes in COL male mice at 18 months or older. Colonized male mice had transcripts indicative of lower tumor necrosis factor-alpha (TNF) signaling via nuclear factor κB (NF-κB). Our findings show that microbiota can increase systemic cellular immunity, while decreasing muscle inflammation, thereby protecting against muscle loss and frailty. We also found sex differences in the role of microbiota regulating frailty. We propose that microbiota components protect against lower muscle mass and frailty across the lifespan in mice.

publication date

  • February 10, 2025