Changes in Population, Growth, and Physiological Indices of Longnose Dace (Rhinichthys cataractae) in the Red Deer River, Alberta, Canada Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The Red Deer River, Alberta, Canada is a prairie river that is impacted by the point-source input of Red Deer's municipal wastewater effluent and non-point- source agricultural runoff. We used population, growth, and physiological performance end points in longnose dace (Rhinichthys cataractae), an endemic and abundant minnow, to evaluate changes in fish health over a 220 km section of the Red Deer River. Longnose dace immediately downstream of Red Deer had elevated catch per unit effort with larger body and liver sizes compared to upstream of Red Deer sites, likely due to elevated riverine productivity from Red Deer's wastewater effluent. Longnose dace immediately downstream of Red Deer showed depressed testosterone production capacity and elevated ethoxyresorufin-O-deethylase (EROD) activity, which is consistent with exposure to endocrine-disrupting compounds and aromatic hydrocarbons, respectively. Longnose dace 150-180 km downstream of Red Deer had reduced liver and gonad sizes, elevated EROD, and increased 11-ketotestosterone production capacity compared to upstream of Red Deer sites, possibly related to a non-point-source agricultural influence on water quality. Longnose dace populations at the most downstream sites were missing the oldest age classes and might reach sexual maturity faster than at upstream sites, which is consistent with a younger age structure. Our results highlight the importance of assessing multiple performance end points to reveal physiological or reproductive effects in natural fish populations. We have demonstrated how longnose dace populations change over a river impacted by municipal wastewater and agricultural runoff; further studies are required to determine if these changes will influence the long-term viability of longnose dace in the Red Deer River.

publication date

  • November 2008