A bi-level chance-constrained programming method for quantifying the effectiveness of water-trading to water-food-ecology nexus in Amu Darya River basin of Central Asia
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Issues of water scarcity, food crisis, and ecological degradation pose great challenges to the sustainable development of Central Asia. In this study, a bi-level chance-constrained programming (BCCP) method is developed for planning water-food-ecology (WFE) nexus system of the Amu Darya River basin, where the efficiency of water-trading mechanism and the impact of uncertain water-availability are examined. This is the first attempt for planning WFE nexus system by incorporating chance-constrained programming (CCP) within a bi-level optimization framework. BCCP can reflect the risk of violating probabilistic constraint under uncertainty as well as balance the tradeoff between two-level decision makers in the WFE nexus system. Under trading scheme, multiple scenarios in association with different food demand, ecological-water requirement, and water availability are examined. Major findings are: (i) compared with that under non-trading, system benefits would increase [3.9, 20.4]% under trading scenarios, disclosing that water trading is an effective mechanism for the study basin; (ii) when food demand increases 10.5%, water allocated to ecological use would decrease [0.9, 2.7]% under all scenarios, revealing that agriculture can squeeze ecological water; (iii) both system benefit and water allocation would increase with p level, implying there is a tradeoff between system benefit and system-failure risk. These findings can gain insight into the interaction between two-level stakeholders and objectives as well as provide decision support for WFE nexus synergetic management.