Negative regulation of Salmonella pathogenicity island 2 is required for contextual control of virulence during typhoid Journal Articles uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • Salmonella enterica relies on a type III secretion system encoded in Salmonella pathogenicity island-2 (SPI-2) to survive and replicate within macrophages at systemic sites during typhoid. SPI-2 virulence is induced upon entry into macrophages, but the mechanisms of SPI-2 gene control in vivo remain unclear, particularly with regard to negative regulators that control the contextual activation of SPI-2. Here, we identified and characterized YdgT as a negative modulator of the SPI-2 pathogenicity island and established that this negative regulation is central to systemic pathogenesis because ydgT mutants overexpressing typhoid virulence genes were ultimately attenuated during infection. ydgT mutants displayed a biphasic virulence phenotype during in vivo competitive infections that consisted of an early “gain-of-virulence” dependent on SPI-2 activation, followed by attenuation later in infection indicating that proper contextual regulation of SPI-2 by YdgT is necessary for full virulence during systemic colonization. These data suggest that overexpression of virulence-associated type III secretion genes can have an adverse effect on bacterial pathogenesis in vivo .


  • Coombes, Brian
  • Wickham, Mark E
  • Lowden, Michael J
  • Brown, Nat F
  • Finlay, B Brett

publication date

  • November 29, 2005