β-Lactone natural products and derivatives inactivate homoserine transacetylase, a target for antimicrobial agents Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Homoserine transacetylase (HTA) catalyzes the transfer of an acetyl group from acetyl-CoA to the hydroxyl group of homoserine. This is the first committed step in the biosynthesis of methionine (Met) from aspartic acid in many fungi, Gram-positive and some Gram-negative bacteria. The enzyme is absent in higher eukaryotes and is important for microorganism growth in Met-poor environments, such as blood serum, making HTA an attractive target for new antimicrobial agents. HTA catalyzes acetyl transfer via a double displacement mechanism facilitated by a classic Ser-His-Asp catalytic triad located at the bottom of a narrow actives site tunnel. We explored the inhibitory activity of several β-lactones to block the activity of HTA. In particular, the natural product ebelactone A, a β-lactone with a hydrophobic tail was found to be a potent inactivator of HTA from Haemophilus influenzae. Synthetic analogs of ebelactone A demonstrated improved inactivation characteristics. Covalent modification of HTA was confirmed by mass spectrometry, and peptide mapping identified Ser143 as the modified residue, consistent with the known structure and mechanism of the enzyme. These results demonstrate that β-lactone inhibitors are excellent biochemical probes of HTA and potential leads for new antimicrobial agents.

publication date

  • July 2011