Sex-Specific Differences in an ApoE−/−:Ins2+/Akita Mouse Model of Accelerated Atherosclerosis
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Diabetic patients have a twofold to fourfold increased risk of cardiovascular disease. Despite a vast amount of research, the underlying mechanisms that predispose individuals with diabetes to the development of cardiovascular disease are unclear. To further our understanding of how diabetes promotes atherosclerosis, we have established, characterized, and manipulated a new model of hyperglycemia-induced atherosclerosis: the apolipoprotein E-deficient (ApoE(-/-)):Ins2(+/Akita) mouse. All mice were fed a standard chow diet. Male ApoE(-/-):Ins2(+/Akita) mice developed chronic hyperglycemia, which significantly accelerated atherosclerosis. Female ApoE(-/-):Ins2(+/Akita) mice presented hyperglycemia that normalized by 15 weeks of age. Despite the transient hyperglycemia, advanced atherosclerosis was observed at 15 weeks of age compared with ApoE(-/-) females. To better understand these differences, subsets of mice were castrated or ovariectomized at 5 weeks of age. Castrated ApoE(-/-):Ins2(+/Akita) mice showed a reduction in blood glucose levels that correlated with the amelioration of atherosclerosis. Interestingly, castrated normoglycemic ApoE(-/-) mice developed larger atherosclerotic lesions than sham-operated on controls. Ovariectomized ApoE(-/-):Ins2(+/Akita) mice presented chronic hyperglycemia, and atherosclerosis appeared to be advanced. We have characterized the distinctive sex-specific phenotypes exhibited by the ApoE(-/-):Ins2(+/Akita) mouse model and present evidence for the action of sex hormones on pancreatic β-cell function and the vasculature that affect the regulation of blood glucose levels and the development of atherosclerosis. This model will provide a test bed to further delineate these effects.