Journal article
Use of Machine Learning for Predicting Escitalopram Treatment Outcome From Electroencephalography Recordings in Adult Patients With Depression
Abstract
Authors
Zhdanov A; Atluri S; Wong W; Vaghei Y; Daskalakis ZJ; Blumberger DM; Frey BN; Giacobbe P; Lam RW; Milev R
Journal
JAMA Network Open, Vol. 3, No. 1,
Publisher
American Medical Association (AMA)
Publication Date
January 3, 2020
DOI
10.1001/jamanetworkopen.2019.18377
ISSN
2574-3805
Associated Experts
Fields of Research (FoR)
Medical Subject Headings (MeSH)
AdultAntidepressive Agents, Second-GenerationBiomarkersCanadaCitalopramDepressive Disorder, MajorElectroencephalographyFemaleHumansMachine LearningMaleMiddle AgedPredictive Value of TestsPrognosisReproducibility of ResultsSensitivity and SpecificitySupport Vector MachineTreatment OutcomeMajor Depressive Disorder