Theoretical modeling of dark current in quantum dot infrared photodetectors using nonequilibrium Green’s functions Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • A theoretical model describing electron dynamics in quantum dot (QD) infrared photodetectors (QDIPs) is presented. The model is based on the nonequilibrium Green’s functions formalism which provides a general framework to study electron transport in a nonequilibrium quantum system and in the presence of interactions. A self-consistent solution of the charge density and the average potential energy through the device and satisfying Poisson’s equation has been obtained; hence, the Hamiltonian of the QDs is established. The self-energies due to coupling with the contact layers and due to internal electron interactions are calculated and then Green’s functions of the QDs are obtained by numerically solving their governing kinetic equations using the method of finite differences. A quantum transport equation using Green’s functions is formed to calculate the current. The model has been applied to simulate the dark current and to extract microscopic information about the density of states and carrier distribution in the quantum dot bound and continuum states. The simulated dark currents with this model are in good agreement with experimental results over a wide range of applied biases and temperatures. The model was also used to study the effect on the dark current and the average number of electrons occupying the QDs due to changing the QD doping density, the barrier separation between QD layers, and the number of QD layers. The model is general and can be applied to any QDIP structures as a tool in design and for predictions of their dark current characteristics.

publication date

  • July 1, 2008