abstract
- Thrombin mediates the balance between coagulant and fibrinolytic forces and has numerous cellular effects. This intricate balance is maintained by biochemical mechanisms that regulate thrombin activity. Disruption of this balance could lead to bleeding or thrombosis. Once thrombin is generated, two major mechanisms regulate its activity. By binding fibrin, thrombin's activity is localized to the thrombus, a process that limits its systemic procoagulant effects. Thrombin that escapes into the circulation is efficiently inactivated by plasma inhibitors, such as antithrombin, or is sequestered by thrombomodulin on the endothelium. Although thrombin's interaction with fibrin limits its systemic effects, fibrin-bound thrombin resists inactivation and can produce a local procoagulant stimulus that triggers thrombus growth. Direct thrombin inhibitors were developed, at least in part, to target fibrin-bound thrombin. These agents are finding their niche for the prevention and treatment of venous and arterial thrombosis. The mechanisms by which thrombin binds fibrin are reviewed in this paper. As well, the potential pathological consequences of thrombin's interaction with fibrin are discussed.