L-type Ca2+ channels, Ca2+-induced Ca2+ release, and BKCa channels in airway stretch-induced contraction
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Resistance arteries constrict in response to mechanical stress. This response is myogenic in nature, and reliant on membrane depolarization, activation of L-type Ca(2+) channels, Ca(2+)-induced Ca(2+)-release and large conductance Ca(2+)-dependent K(+) channels (BK(Ca)). Airway smooth muscle is also affected by mechanical stress: a deep inspiration produces a bronchodilation in healthy individuals, but bronchoconstriction in moderate to severe asthmatics. In this study, our objective was to investigate the regulation of this airway stretch-activated contractile response (R(stretch)), and explore its similarities to the vascular myogenic response. Using a pharmacological approach in intact bovine bronchial segments cannulated horizontally in an organ bath, we showed the ability of carbachol (2-carbamoyloxyethyl-trimethyl-azanium), KCl, neurokinin-A, and U46619 (9,11-dideoxy-9α,11α-methanoepoxy-prosta-5Z, 13E-dien-1-oic acid) to generate R(stretch) in a concentration-dependent manner. R(stretch) was significantly reduced by nifedipine, ryanodine, and iberiotoxin, suggesting that it possesses characteristics similar to those of the vascular smooth muscle myogenic response, such as a role for membrane depolarization, L-type Ca(2+) channel, ryanodine receptors and BK(Ca) channel activation. This study demonstrates a novel role for the L-type Ca(2+) channel in airway smooth muscle and provides new insights into possible mechanisms regulating the deep inspiration-induced bronchoconstriction seen in asthmatics.