abstract
- To prevent coagulation in contact with blood, polydimethylsiloxane (PDMS) was modified with an antithrombin-heparin (ATH) covalent complex using polyethylene glycol (PEG) as a linker/spacer. Using NHS chemistry, ATH was attached covalently to the distal chain end of the immobilized PEG linker. Surfaces were characterized by contact angle and X-ray photoelectron spectroscopy; attachment was confirmed by decrease in contact angles and an increase in nitrogen content as determined by X-ray photoelectron spectroscopy. Protein interactions in plasma were investigated using radiolabeled proteins added to plasma as tracers, and by immunoblotting of eluted proteins. Modification of PDMS with PEG alone was effective in reducing non-specific protein adsorption; attachment of ATH at the distal end of the PEG chains did not significantly affect protein resistance. It was shown that surfaces modified with ATH bound antithrombin selectively from plasma through the pentasaccharide sequence on the heparin moiety of ATH, indicating the ability of the ATH-modified surfaces to inhibit coagulation. Using thromboelastography, the effect of ATH modification on plasma coagulation was evaluated directly. It was found that initiation of coagulation was delayed and the time to clot was prolonged on PDMS modified with ATH/PEG compared to controls. For comparison, surfaces modified in a similar way with heparin were prepared and investigated using the same methods. The data suggest that the ATH-modified surfaces have superior anticoagulant properties compared to those modified with heparin.