A population of c-kit + IL-17A + ILC2s in sputum from individuals with severe asthma supports ILC2 to ILC3 trans-differentiation Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • In prednisone-dependent severe asthma, uncontrolled sputum eosinophilia is associated with increased numbers of group 2 innate lymphoid cells (ILC2s). These cells represent a relatively steroid-insensitive source of interleukin-5 (IL-5) and IL-13 and are considered critical drivers of asthma pathology. The abundance of ILC subgroups in severe asthma with neutrophilic or mixed granulocytic (both eosinophilic and neutrophilic) airway inflammation, prone to recurrent infective exacerbations, remains unclear. Here, we found by flow cytometry that sputum ILC3s are increased in severe asthma with intense airway neutrophilia, whereas equivalently raised sputum ILC2s and ILC3s were found in severe asthma with mixed granulocytic inflammation. Unbiased clustering analyses identified an “intermediate-ILC2” population displaying markers of both ILC2s (prostaglandin D 2 receptor 2; CRTH2, IL-5, and IL-13) and ILC3s (c-kit and IL-17A) that were most abundant in severe asthma with mixed granulocytic airway inflammation. Intermediate ILC2s correlated with airway neutrophilia and were associated with increased amounts of IL-1β and IL-18 in sputum supernatants. Coculture of sort-purified canonical ILC2s with IL-1β and IL-18 in vitro up-regulated c-kit and IL-17A as well as gene expression profiles related to both type 2 and type 17 inflammatory pathways. Together, we have identified an intermediate-ILC2 phenotype in the airways of individuals with severe mixed granulocytic asthma, representing a candidate therapeutic target for controlling neutrophilic airway inflammation.

publication date

  • January 15, 2025