Modulation of neural oscillations in escitalopram treatment: a Canadian biomarker integration network in depression study.
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Current pharmacological agents for depression have limited efficacy in achieving remission. Developing and validating new medications is challenging due to limited biological targets. This study aimed to link electrophysiological data and symptom improvement to better understand mechanisms underlying treatment response. Longitudinal changes in neural oscillations were assessed using resting-state electroencephalography (EEG) data from two Canadian Biomarker Integration Network in Depression studies, involving pharmacological and cognitive behavioral therapy (CBT) trials. Patients in the pharmacological trial received eight weeks of escitalopram, with treatment response defined as ≥ 50% decrease in Montgomery-Åsberg Depression Rating Scale (MADRS). Early (baseline to week 2) and late (baseline to week 8) changes in neural oscillation were investigated using relative power spectral measures. An association was found between an initial increase in theta and symptom improvement after 2 weeks. Additionally, late increases in delta and theta, along with a decrease in alpha, were linked to a reduction in MADRS after 8 weeks. These late changes were specifically observed in responders. To assess specificity, we extended our analysis to the independent CBT cohort. Responders exhibited an increase in delta and a decrease in alpha after 2 weeks. Furthermore, a late (baseline to week 16) decrease in alpha was associated with symptom improvement following CBT. Results suggest a common late decrease in alpha across both treatments, while modulatory effects in theta may be specific to escitalopram treatment. This study offers insights into electrophysiological markers indicating a favorable response to antidepressants, enhancing our comprehension of treatment response mechanisms in depression.