abstract
- Researchers have suggested that visual feedback not only plays a role in the correction of errors during movement execution but that visual feedback from a completed movement is processed offline to improve programming on upcoming trials. In the present study, we examined the potential contribution of online and offline processing of visual feedback by analysing spatial variability at various kinematic landmarks in the limb trajectory (peak acceleration, peak velocity, peak negative acceleration and movement end). Participants performed a single degree of freedom video aiming task with and without vision of the cursor under four criterion movement times (225, 300, 375 and 450 ms). For movement times of 225 and 300 ms, the full vision condition was less variable than the no vision condition. However, the form of the variability profiles did not differ between visual conditions suggesting that the contribution of visual feedback was due to offline processes. In the 375 and 450 ms conditions, there was evidence for both online and offline control as the form of the variability profiles differed significantly between visual conditions.