abstract
- OBJECTIVE: Individuals with a concussion history tend to perform worse on dual-tasks compared controls but the underlying neural mechanisms contributing to these deficits are not understood. This study used event-related potentials (ERPs) to investigate sensory gating and cognitive processing in athletes with and without a history of concussion while they performed a challenging dual-task. METHODS: We recorded sensory (P50, N100) and cognitive (P300) ERPs in 30 athletes (18 no previous concussion; 12 history of concussion) while they simultaneously performed an auditory oddball task and a working memory task that progressively increased in difficulty. RESULTS: The concussion group had reduced auditory performance as workload increased compared to the no-concussion group. Sensory gating and cognitive processing were reduced in the concussion group indicating problems with filtering relevant from irrelevant information and appropriately allocating resources. Sensory gating (N100) was positively correlated with cognitive processing (P300) at the hardest workload in the no-concussion group but negatively correlated in the concussion group. CONCLUSION: Concussions result in long-term problems in behavioral performance, which may be due to poorer sensory gating that impacts cognitive processing. SIGNIFICANCE: Problems effectively gating sensory information may influence the availability or allocation of attention at the cognitive stage in those with a concussion.