Structural determinants of the interactions of catechins with Aβ oligomers and lipid membranes Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The aberrant self-assembly of intrinsically disordered proteins (IDPs) into soluble oligomers and their interactions with biological membranes underlie the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease. Catechins have emerged as useful tools to reduce the toxicity of IDP oligomers by modulating their interactions with membranes. However, the structural determinants of catechin binding to IDP oligomers and membranes remain largely elusive. Here, we assemble a catechin library by combining several naturally occurring chemical modifications and, using a coupled NMR-statistical approach, we map at atomic resolution the interactions of such library with the Alzheimer's-associated amyloid-beta (Aβ) oligomers and model membranes. Our results reveal multiple catechin affinity drivers and show that the combination of affinity-reducing covalent changes may lead to unexpected net gains in affinity. Interestingly, we find that the positive cooperativity is more prevalent for Aβ oligomers than membrane binding, and that the determinants underlying catechin recognition by membranes are markedly different from those dissected for Aβ oligomers. Notably, we find that the unanticipated positive cooperativity arises from the critical regulatory role of the gallate catechin moiety, which recruits previously disengaged substituents into the binding interface and leads to an overall greater compaction of the receptor-bound conformation. Overall, the previously elusive structural attributes mapped here provide an unprecedented foundation to establish structure-activity relationships of catechins.

authors

publication date

  • February 2022