abstract
- The agricultural by-product of Lentinus edodes was used as a novel biosorbent for bioremediation of chromate contaminated waste water in the simulated experimental conditions. The contact time, particle size, biosorbent dosage and optimum pH range were investigated to optimize the sorption condition. The biosorption by the biomass was strongly affected by pH. At pH 1.0-2.5, all hexavalent chromium was diminished, either removed by the biosorbent or reduced to less toxic trivalent chromium even in very high concentration of 1000 mg/L. The adsorbed hexavalent chromium and reduced trivalent chromium were both linearly dependent on the initial chromium concentration. Most uptake of Cr occurred at pH around 4. The maximum uptake of chromium was 21.5 mg/g when simulated with Langmuir model, which showed the potential biosorption capacity of this biomaterial. The change of oxidation-reduction potential (ORP) during biosorption process revealed strong reduction ability of this biosorbent. Comparing analysis from Fourier transform infrared spectrums indicated that nitrogen oxide and carboxyl groups were increased after biosorption. The energy-dispersive X-ray microanalyzer revealed the mechanism of cation exchange during biosorption.