abstract
- A process for generating thermal contraction coefficients for use in the solidification modeling of aluminum castings is presented. Sequentially coupled thermal-stress modeling is used in conjunction with experimentation to empirically generate the thermal contraction coefficients for a strontium-modified A356 alloy. The impact of cooling curve analysis on the modeling procedure is studied. Model results are in good agreement with experimental findings, indicating a sound methodology for quantifying the thermal contraction. The technique can be applied to other commercially relevant aluminum alloys, increasing the utility of solidification modeling in the casting industry