OBJECTIVE: External, nonrestrictive, macro-porous polyester stents prevent neointima formation in porcine vein grafts and have been proposed as a therapeutic approach to the prevention of late vein graft failure. These stents are nonbiodegradable and therefore may promote long-term foreign body problems including infection and inflammation. The effect of external macro-porous biodegradable (polyglactin) sheaths on neointimal and medial thickening in porcine vein grafts was therefore investigated. METHODS: Bilateral saphenous vein-carotid artery interposition grafting was performed in white Landrace pigs (n = 8) with external placement of polyglactin (Vicryl) sheaths (8 mm in diameter) on 1 side, with the contralateral side acting as a control. One month after surgery, grafts were explanted and wall dimensions measured on histological sections using computer-aided planimetry, and an immunocytochemical appraisal was carried out. RESULTS: All grafts were patent at explantation. Polyglactin sheaths significantly reduced intimal thickness, medial thickness, and the percentage of proliferating cells compared with unsheathed controls. There was a pronounced accumulation of macrophages, giant cells, endothelial cells, and microvessels within and surrounding the biodegradable sheath compared with controls. CONCLUSIONS: A nonrestrictive, biodegradable (polyglactin), external sheath reduces medial and intimal thickening in experimental saphenous vein grafts, possibly through inflammatory cell-mediated angiogenesis. If subsequent long-term studies confirm preservation of this beneficial effect, once the sheath biodegrades, this approach may have an advantage over the permanent polyester stent when applied clinically.