Synthesis and evaluation of new salicylaldehyde-2-picolinylhydrazone Schiff base compounds of Ru(II), Rh(III) and Ir(III) as in vitro antitumor, antibacterial and fluorescence imaging agents
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Reaction of salicylaldehyde-2-picolinylhydrazone (HL) Schiff base ligand with precursor compounds [{(p-cymene)RuCl2}2] 1, [{(C6H6)RuCl2}2] 2, [{Cp*RhCl2}2] 3 and [{Cp*IrCl2}2] 4 yielded the corresponding neutral mononuclear compounds 5-8, respectively. The in vitro antitumor evaluation of the compounds 1-8 against Dalton's ascites lymphoma (DL) cells by fluorescence-based apoptosis study and by their half-maximal inhibitory concentration (IC50) values revealed the high antitumor activity of compounds 3, 4, 5 and 6. Compounds 1-8 render comparatively lower apoptotic effect than that of cisplatin on model non-tumor cells, i.e., peripheral blood mononuclear cells (PBMC). The antibacterial evaluation of compounds 5-8 by agar well-diffusion method revealed that compound 6 is significantly effective against all the eight bacterial species considered with zone of inhibition up to 35 mm. Fluorescence imaging study of compounds 5-8 with plasmid circular DNA (pcDNA) and HeLa RNA demonstrated their fluorescence imaging property upon binding with nucleic acids. The docking study with some key enzymes associated with the propagation of cancer such as ribonucleotide reductase, thymidylate synthase, thymidylate phosphorylase and topoisomerase II revealed strong interactions between proteins and compounds 5-8. Conformational analysis by density functional theory (DFT) study has corroborated our experimental observation of the N, N binding mode of ligand. Compounds 5-8 exhibited a HOMO (highest occupied molecular orbital)-LUMO (lowest unoccupied molecular orbital) energy gap 2.99-3.04 eV. Half-sandwich ruthenium, rhodium and iridium compounds were obtained by treatment of metal precursors with salicylaldehyde-2-picolinylhydrazone (HL) by in situ metal-mediated deprotonation of the ligand. Compounds under investigation have shown potential antitumor, antibacterial and fluorescence imaging properties. Arene ruthenium compounds exhibited higher activity compared to that of Cp*Rh/Cp*Ir in inhibiting the cancer cells growth and pathogenic bacteria. At a concentration 100 µg/mL, the apoptosis activity of arene ruthenium compounds, 5 and 6 (~30 %) is double to that of Cp*Rh/Cp*Ir compounds, 7 and 8 (~12 %). Among the four new compounds 5-8, the benzene ruthenium compound, i.e., compound 6 is significantly effective against the pathogenic bacteria under investigation.