Psychomotor performance measured in a virtual environment correlates with technical skills in the operating room
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
BACKGROUND: This study was conducted to validate the role of virtual reality computer simulation as an objective method for assessing laparoscopic technical skills. The authors aimed to investigate whether performance in the operating room, assessed using a modified Objective Structured Assessment of Technical Skill (OSATS), correlated with the performance parameters registered by a virtual reality laparoscopic trainer (LapSim). METHODS: The study enrolled 10 surgical residents (3 females) with a median of 5.5 years (range, 2-6 years) since graduation who had similar limited experience in laparoscopic surgery (median, 5; range, 1-16 laparoscopic cholecystectomies). All the participants performed three repetitions of seven basic skills tasks on the LapSim laparoscopic trainer and one laparoscopic cholecystectomy in the operating room. The operating room procedure was video recorded and blindly assessed by two independent observers using a modified OSATS rating scale. Assessment in the operating room was based on three parameters: time used, error score, and economy of motion score. During the tasks on the LapSim, time, error (tissue damage and millimeters of tissue damage [tasks 2-6], error score [incomplete target areas, badly placed clips, and dropped clips [task 7]), and economy of movement parameters (path length and angular path) were registered. The correlation between time, economy, and error parameters during the simulated tasks and the operating room procedure was statistically assessed using Spearman's test. RESULTS: Significant correlations were demonstrated between the time used to complete the operating room procedure and time used for task 7 (r (s) = 0.74; p = 0.015). The error score demonstrated during the laparoscopic cholecystectomy correlated well with the tissue damage in three of the seven tasks (p < 0.05), the millimeters of tissue damage during two of the tasks, and the error score in task 7 (r (s) = 0.67; p = 0.034). Furthermore, statistically significant correlations were observed between the economy of motion score from the operative procedure and LapSim's economy parameters (path length and angular path in six of the tasks) (p < 0.05). CONCLUSIONS: The current study demonstrated significant correlations between operative performance in the operating room (assessed using a well-validated rating scale) and psychomotor performance in virtual environment assessed by a computer simulator. This provides strong evidence for the validity of the simulator system as an objective tool for assessing laparoscopic skills. Virtual reality simulation can be used in practice to assess technical skills relevant for minimally invasive surgery.