Home
Scholarly Works
Discovery of a proteolytic flagellin family in...
Journal article

Discovery of a proteolytic flagellin family in diverse bacterial phyla that assembles enzymatically active flagella

Abstract

Bacterial flagella are cell locomotion and occasional adhesion organelles composed primarily of the polymeric protein flagellin, but to date have not been associated with any enzymatic function. Here, we report the bioinformatics-driven discovery of a class of enzymatic flagellins that assemble to form proteolytically active flagella. Originating by a metallopeptidase insertion into the central flagellin hypervariable region, this flagellin family has expanded to at least 74 bacterial species. In the pathogen, Clostridium haemolyticum, metallopeptidase-containing flagellin (which we termed flagellinolysin) is the second most abundant protein in the flagella and is localized to the extracellular flagellar surface. Purified flagellar filaments and recombinant flagellin exhibit proteolytic activity, cleaving nearly 1000 different peptides. With ~ 20,000 flagellin copies per  ~ 10-μm flagella this assembles the largest proteolytic complex known. Flagellum-mediated extracellular proteolysis expands our understanding of the functional plasticity of bacterial flagella, revealing this family as enzymatic biopolymers that mediate interactions with diverse peptide substrates.

Authors

Eckhard U; Bandukwala H; Mansfield MJ; Marino G; Cheng J; Wallace I; Holyoak T; Charles TC; Austin J; Overall CM

Journal

Nature Communications, Vol. 8, No. 1,

Publisher

Springer Nature

Publication Date

December 1, 2017

DOI

10.1038/s41467-017-00599-0

ISSN

2041-1723

Contact the Experts team