Combined use of the high heparin step and optical density to optimize diagnostic sensitivity and specificity of an anti-PF4/heparin enzyme-immunoassay Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • BACKGROUND: IgG-specific anti-PF4/heparin enzyme-immunoassays (EIAs) are sensitive but not specific for platelet-activating antibodies, the cause of heparin-induced thrombocytopenia (HIT). Two features of EIA reactivity predict for presence of HIT antibodies - the magnitude of a positive result (in optical density [OD] units) and the inhibition of reactivity at high heparin concentrations - but their combined utility remains uncertain. OBJECTIVE: To determine for an IgG-specific EIA how the OD values of a positive reaction and its inhibition by high heparin can be optimally combined. METHODS: We screened 1,000 consecutive patients with suspected HIT using an IgG-specific PF4/heparin in-house EIA with and without high heparin (100 IU/mL); and by the heparin-induced platelet activation test. RESULTS: Platelet-activating antibodies were rarely detected (<0.2%) when the IgG-specific EIA was negative at the conventional cut-off (OD, 0.5). However, an OD cut-off of 1.0 resulted in an unacceptable loss of sensitivity (14/83=17%) for detecting platelet-activating antibodies. The high heparin step increased specificity for platelet-activating antibodies from 72% to 89% without loss of sensitivity when applied to weak-positive sera (OD≤1.0). However, decreased sensitivity was observed with strong-positive sera (OD>1.0): 11/69 such sera (16%) that did not show >40% inhibition by high heparin nevertheless contained platelet-activating antibodies. CONCLUSION: Specificity of an IgG-specific EIA for detecting platelet-activating antibodies can be optimized by applying the high heparin inhibition step to weak-positive reactions (0.5-≤1.0 OD). However, applying the high heparin inhibition step to strong-positive reactions (>1.0 OD) in our in-house assay risks falsely classifying a serum as negative for platelet-activating antibodies.

authors

publication date

  • September 2011