Monoclonal antibodies to Escherichia coli F1-ATPase. Correlation of binding site location with interspecies cross-reactivity and effects on enzyme activity.
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Twenty-one hybridoma cell lines which secret antibodies to the subunits of the Escherichia coli F1-ATPase were produced. Included within the set are four antibodies which are specific for alpha, six for beta, three for gamma, four for delta and four for epsilon. The antibodies were divided into binding competition subgroups. Two such competition subgroups are represented for the alpha, beta, and epsilon subunits, one for delta and three for gamma. The ability to bind intact F1-ATPase was demonstrated for some of the antibodies to alpha and beta, and for all of those to delta, while the antibodies to gamma and epsilon gave unclear results. All of the antibodies to alpha and beta which bound ATPase were found to have effects on the ATPase activity of purified E. coli F1-ATPase. One of those to alpha inhibited activity by about 30%. Another anti-alpha was mildly stimulatory. The four antibodies to beta which bound ATPase inhibited activity by 90%. In contrast, membrane-bound ATPase was hardly affected by the antibodies to alpha, but was inhibited by 40-60% by the antibodies to beta. The other antibodies to alpha and beta bound only free subunits, or partially dissociated ATPase, suggesting that their epitopes are buried between subunits in ATPase. These antibodies had no effects on activity. The ability of the antibodies to recognize ATPase subunits present in crude extracts from mitochondria, chloroplasts, and a variety of bacteria was tested using nitrocellulose blots of sodium dodecyl sulfate-polyacrylamide gels. One anti-beta specifically recognized proteins in the range of 50,000-60,000 daltons in each of the extracts, although the reaction with mitochondrial beta was weak. Some of the other antibodies had limited cross-reaction, but most were specific for the E. coli protein. In some species, those proteins which were recognized by the anti-beta ran with a higher apparent molecular weight than proteins which were recognized by an anti-alpha. All antibodies which exhibited cross-reactivity were found to recognize sites which were not exposed in intact ATPase, implying that the surfaces which lie between subunits are most highly conserved.