The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Antidote/toxin gene pairs known as "addiction modules" can maintain plasmids in bacterial populations by means of post-segregational killing. However, several chromosome-encoded addiction modules may provide an entirely distinct function in the programmed cell death of moribund subpopulations under starvation conditions. We now report a novel chromosomal bacteriolytic module of Escherichia coli called the entericidin locus, which is activated in stationary phase under high osmolarity conditions by sigmaS and simultaneously repressed by the osmoregulatory EnvZ/OmpR signal transduction pathway. The entericidin locus encodes tandem paralogous genes (ecnAB) and directs the synthesis of two small cell-envelope lipoproteins. An attenuator precedes ecnA and an ompR-sensitive sigmaS promoter governs expression of ecnB. The entericidin A lipoprotein is an antidote to the bacteriolytic lipoprotein entericidin B. The entericidins are predicted to adopt amphipathic alpha-helical structures and to reciprocally modulate membrane stability. The entericidin locus is not present on any known plasmids, but is conserved in the homologous region of the Citrobacter freundii chromosome. Although the cloned C. freundii entericidin locus is expressed in E. coli independently of ompR, it carries an additional ompR-like gene called ecnR. The organization of the entericidin locus as a chromosomal antidote/toxin gene pair, which is regulated by both positive and negative osmotic signals during starvation, is consistent with an emerging paradigm of programmed bacterial cell death.

authors

  • Bishop, Russell
  • Leskiw, Brenda K
  • Hodges, Robert S
  • Kay, Cyril M
  • Weiner, Joel H

publication date

  • July 1998