Home
Scholarly Works
Reduced carbohydrate availability enhances...
Journal article

Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis

Abstract

The mechanisms that regulate the enhanced skeletal muscle oxidative capacity observed when training with reduced carbohydrate (CHO) availability are currently unknown. The aim of the present study was to test the hypothesis that reduced CHO availability enhances p53 signaling and expression of genes associated with regulation of mitochondrial biogenesis and substrate utilization in human skeletal muscle. In a repeated-measures design, muscle biopsies (vastus lateralis) were obtained from eight active males before and after performing an acute bout of high-intensity interval running with either high (HIGH) or low CHO availability (LOW). Resting muscle glycogen (HIGH, 467 ± 19; LOW, 103 ± 9 mmol/kg dry wt) was greater in HIGH compared with LOW (P < 0.05). Phosphorylation (P-) of ACC(Ser79) (HIGH, 1.4 ± 0.4; LOW, 2.9 ± 0.9) and p53(Ser15) (HIGH, 0.9 ± 0.4; LOW, 2.6 ± 0.8) was higher in LOW immediately postexercise and 3 h postexercise, respectively (P < 0.05). Before and 3 h postexercise, mRNA content of pyruvate dehydrogenase kinase 4, mitochondrial transcription factor A, cytochrome-c oxidase IV, and PGC-1α were greater in LOW compared with HIGH (P < 0.05), whereas carnitine palmitoyltransferase-1 showed a trend toward significance (P = 0.09). However, only PGC-1α expression was increased by exercise (P < 0.05), where three-fold increases occurred independently of CHO availability. We conclude that the exercise-induced increase in p53 phosphorylation is enhanced in conditions of reduced CHO availability, which may be related to upstream signaling through AMPK. Given the emergence of p53 as a molecular regulator of mitochondrial biogenesis, such nutritional modulation of contraction-induced p53 activation has implications for both athletic and clinical populations.

Authors

Bartlett JD; Louhelainen J; Iqbal Z; Cochran AJ; Gibala MJ; Gregson W; Close GL; Drust B; Morton JP

Journal

AJP Regulatory Integrative and Comparative Physiology, Vol. 304, No. 6, pp. r450–r458

Publisher

American Physiological Society

Publication Date

March 15, 2013

DOI

10.1152/ajpregu.00498.2012

ISSN

0363-6119

Contact the Experts team