Inactivation of human muscle Na+-K+-ATPase in vitro during prolonged exercise is increased with hypoxia Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • This study investigated the effects of prolonged exercise performed in normoxia (N) and hypoxia (H) on neuromuscular fatigue, membrane excitability, and Na+-K+-ATPase activity in working muscle. Ten untrained volunteers [peak oxygen consumption (VV̇o2 peak) = 42.1 ± 2.8 (SE) ml·kg-1·min-1] performed 90 min of cycling during N (inspired oxygen fraction = 0.21) and during H (inspired oxygen fraction = 0.14) at ∼50% of normoxic VV̇o2 peak. During N, 3- O-methylfluorescein phosphatase activity (nmol·mg protein-1·h-1) in vastus lateralis, used as a measure of Na+-K+-ATPase activity, decreased ( P < 0.05) by 21% at 30 min of exercise compared with rest (101 ± 53 vs. 79.6 ± 4.3) with no further reductions observed at 90 min (72.8 ± 8.0). During H, similar reductions ( P < 0.05) were observed during the first 30 min (90.8 ± 5.3 vs. 79.0 ± 6.3) followed by further reductions ( P < 0.05) at 90 min (50.5 ± 3.9). Exercise in N resulted in reductions ( P < 0.05) in both quadriceps maximal voluntary contractile force (MVC; 633 ± 50 vs. 477 ± 67 N) and force at low frequencies of stimulation, namely 10 Hz (142 ± 16 vs. 86.7 ± 10 N) and 20 Hz (283 ± 32 vs. 236 ± 31 N). No changes were observed in the amplitude, duration, and area of the muscle compound action potential (M wave). Exercise in H was without additional effect in altering MVC, low-frequency force, and M-wave properties. It is concluded that, although exercise in H resulted in a greater inactivation of Na+-K+-ATPase activity compared with N, neuromuscular fatigue and membrane excitability are not differentially altered.

publication date

  • May 2004

has subject area