Home
Scholarly Works
Multi-component assessment of worker exposures in...
Journal article

Multi-component assessment of worker exposures in a copper refinery Part 1. Environmental monitoring

Abstract

The exposure characterisation described in this paper for 135 copper refinery workers (45 females, 90 males) focuses on the concentrations of copper, nickel and other trace elements in the inhalable aerosol fractions, as well as in the water-soluble and water-insoluble subfractions. Some information is also provided on the thoracic and respirable aerosol fractions. Further, results are presented for volatile hydrides of arsenic and selenium released in the copper purification steps of the electrorefining process. For the pyrometallurgical operations, a comparison of the geometric means for the inhalable aerosol fraction indicated that water-soluble copper levels were on average 19-fold higher compared to nickel (p < 0.001) and a significant association was evident between them (r = 0.87, p < 0.001); for the insoluble subfraction, the copper : nickel ratio was 12.5 (p < 0.001) and the inter-element correlation had r = 0.98 and p < 0.001. Although for the electrorefinery workers the relative inhalable concentrations of copper and nickel were not significantly different (p > 0.05), the corresponding inter-element associations were: slope of 7.7, r= 0.54, p < or =0.001 for the water-soluble subfraction and slope of 1.3, r = 0.71 and p < or =0.001 for the water-insoluble subfraction. On average, a good proportion of the inhalable copper and nickel were found in the thoracic (40%) and respirable (20%) aerosol fractions. Cobalt air concentrations were generally low with geometric means and 95% confidence intervals of 3.1 (2.4-4.2)microg m(-3) (pyrometallurgical workers) and 0.3 (0.4-0.5) microg m(-3)(electrorefinery workers). Similarly, the maximum concentrations of cadmium and lead were low, respectively 4 and 25 microg m(-3). Of the hydrides, tellurium and antimony could not be detected, but for the arsenic (arsine) and selenium hydrides measurable exposure occurred for almost all electrorefinery workers, although the levels were generally low at 0.2 microg m(-3).

Authors

Thomassen Y; Nieboer E; Romanova N; Nikanov A; Hetland S; VanSpronsen EP; Odland JØ; Chashchin V

Journal

Environmental Science Processes & Impacts, Vol. 6, No. 12, pp. 985–991

Publisher

Royal Society of Chemistry (RSC)

Publication Date

December 1, 2004

DOI

10.1039/b408464k

ISSN

2050-7887

Contact the Experts team