Catalase activity in coronary artery endothelium protects smooth muscle against peroxide damage Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Cyclopiazonic acid contracts pig coronary artery de-endothelialized rings, and pretreating the rings with hydrogen peroxide (H(2)O(2)) inhibits this contraction (IC(50)=0.097+/-0.013 mM). We used the cyclopiazonic acid contraction to test the novel hypothesis that endothelium can protect underlying smooth muscle against luminal H(2)O(2). We perfused the arteries with Krebs' solution containing 0. 3 or 1 mM H(2)O(2), removing endothelium from the arteries either before or after the perfusion. We then cut rings from them to monitor their contraction to 10 microM cyclopiazonic acid in a H(2)O(2)-free solution. The inhibition of the cyclopiazonic acid contraction by perfusion with H(2)O(2) was significantly less when endothelium was removed after the perfusion than when it was removed before it. The specific activity of catalase in post-nuclear supernatants from freshly isolated endothelium (14.1+/-2.7 micromol/min/mg protein) was 17+/-3-fold greater than in those from smooth muscle (0.83+/-0.22 micromol/min/mg protein). Thus endothelium contained high catalase activity and protected the underlying smooth muscle against luminal peroxide.

publication date

  • November 2000

has subject area