Dehydroascorbic acid uptake by coronary artery smooth muscle: effect of intracellular acidification Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Dehydroascorbic acid (DHAA) enters cells via Na(+)-independent glucose transporters (GLUT) and is converted to ascorbate. However, we found that Na(+) removal inhibited [(14)C]DHAA uptake by smooth-muscle cells cultured from pig coronary artery. The uptake was examined for 2-12 min at 10-200 microM DHAA in either the presence of 134 mM Na(+) or in its absence (N-methyl D-glucamine, choline or sucrose replaced Na(+)). This inhibition of DHAA uptake by Na(+) removal was paradoxical because it was inhibited by 2-deoxyglucose and cytochalasin B, as expected of transport via the GLUT pathway. We tested the hypothesis that this paradox resulted from an inefficient intracellular reduction of [(14)C]DHAA into [(14)C]ascorbate upon intracellular acidosis caused by the Na(+) removal. Consistent with this hypothesis: (i) the Na(+)/H(+)-exchange inhibitors ethylisopropyl amiloride and cariporide also decreased the uptake, (ii) Na(+) removal and Na(+)/H(+)-exchange inhibitors lowered cytosolic pH, with the decrease being larger in 12 min than in 2 min, and (iii) less of the cellular (14)C was present as ascorbate (determined by HPLC) in cells in Na(+)-free buffer than in those in Na(+)-containing buffer. This inability to obtain ascorbate from extracellular DHAA may be detrimental to the coronary artery under hypoxia-induced acidosis during ischaemia/reperfusion.

authors

  • HOLMES, Melanie E
  • MWANJEWE, James
  • SAMSON, Sue E
  • HAIST, James V
  • WILSON, John X
  • DIXON, S Jeffrey
  • KARMAZYN, Morris
  • Grover, Ashok Kumar

publication date

  • March 1, 2002

has subject area