Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • BACKGROUND AND AIMS: Probiotic bacteria are being investigated as possible treatments for many intestinal disorders. The present study aimed to explore the effects of live, heat killed, or gamma irradiated Lactobacillus reuteri on cardio-autonomic response and single fibre unit discharge in dorsal root ganglia to colorectal distension in healthy Sprague-Dawley rats housed under conventional conditions. The effects of this treatment on somatic pain were also examined. METHODS: 1x10(9) bacteria were given by gavage for nine days. Colorectal distension occurred under anaesthesia. Heart rate was measured through continuous electrocardiography. Single fibre unit discharge was recorded from the 6th left lumbar dorsal root ganglion. Somatic pain was evaluated by the tail flick and paw pressure tests. RESULTS: Colorectal distension caused a pressure dependent bradycardia in the control (native medium) group. Treatment with live, heat killed, or gamma irradiated bacteria as well as their products (conditioned medium) prevented the pain response even during the maximum distension pressure (80 mm Hg). Both viable and non-viable bacteria significantly decreased dorsal root ganglion single unit activity to distension. No effects on somatic pain were seen with any treatment. CONCLUSIONS: Oral administration of either live or killed probiotic bacteria or conditioned medium inhibited the constitutive cardio-autonomic response to colorectal distension in rats through effects on enteric nerves. These data may provide a novel explanation for beneficial probiotic effects on visceral pain.

publication date

  • February 1, 2006

published in

  • Gut  Journal