Role of P2X7 Receptor in an Animal Model of Mania Induced by D-Amphetamine Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The objective of this study was to explore the association between the P2X7 purinergic receptor (P2X7R) and neuroinflammation using a preclinical model of acute bipolar mania. We analyzed the modulatory effects of P2X7R agonist (3'-O-(4-benzoyl)benzoyl-adenosine 5'-triphosphate, BzATP) and antagonists (brilliant blue, BBG and 3-[[5-(2,3 dichlorophenyl)-1H-tetrazol-1-yl]methyl]pyridine hydrochloride, A438079) on assessments related to behavior (locomotor activity), neuroinflammation (interleukin-1 beta, IL-1β; tumor necrosis factor alpha, TNF-α; and interleukin- 6, IL-6), oxidative stress (thiobarbituric acid reactive substances, TBARS) and neuroplasticity (brain-derived neurotrophic factor, BDNF) markers in a pharmacological model of mania induced by acute and chronic treatment with D-amphetamine (AMPH) (2 mg/kg) in mice. An apparent lack of responsiveness to AMPH was observed in terms of the locomotor activity in animals with blocked P2X7R or with genetic deletion of P2X7R in knockout (P2X7R(-/-)) mice. Likewise, P2X7R participated in the AMPH-induced increase of the proinflammatory and excitotoxic environment, as demonstrated by the reversal of IL-1β, TNF-α, and TBARS levels caused by P2X7R blocking. Our results support the hypothesis that P2X7R plays a role in the neuroinflammation induced by AMPH in a preclinical model of mania, which could explain the altered behavior. The present data suggest that P2X7R may be a therapeutic target related to the neuroinflammation reported in bipolar disorder.

authors

  • Gubert, Carolina
  • Fries, Gabriel Rodrigo
  • Pfaffenseller, Bianca
  • Ferrari, Pâmela
  • Coutinho-Silva, Robson
  • Morrone, Fernanda Bueno
  • Kapczinski, Flavio
  • Battastini, Ana Maria Oliveira

publication date

  • January 2016

has subject area