Highly active, lipase silicone elastomers Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Lipase Candida rugosa was entrapped in silicone rubber via condensation-cure room temperature vulcanization of silanol-terminated poly(dimethylsiloxane) with tetraethyl orthosilicate as a crosslinker, to give a highly active silicone-enzyme elastomer. The effect on enzyme activity of addition of water and hydrophilic polymeric moieties based on poly(ethylene oxide) 2 was examined, as were crosslinker concentration, enzyme concentration, and elastomer thickness. It was demonstrated that lipase is most active in silicone elastomers and more active in silicone oils than simple hydrocarbons. Crosslink density in these elastomers was not an important factor in the reactivity of the rubber. However, the addition of hydrophilic species prior to elastomer formation decreased the efficiency both of the dispersion of the enzyme and the resulting activity of the elastomer. This effect could be moderated by prior exposure of the lipase to silicone oil. Thus, hydrophobic silicones play a protective/activating role for lipase.

publication date

  • May 2005