In Situ-Gelling Antimicrobial Poly(oligoethylene glycol methacrylate)-Based Hydrogels Integrating Bound Quaternary Ammonia Compounds and Antibiotic Functionalities for Effective Infected Wound Healing. Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • In situ-gelling antibacterial hydrogels are reported in which two antibacterial entities (quaternary ammonium (QA) groups and the antibiotic ciprofloxacin (CIP)) are tethered to a single precursor based on the anti-fouling polymer poly(oligoethylene glycol methacrylate) (POEGMA). Synergism between the QA and CIP tethers is demonstrated to enable broad-spectrum killing and/or disinfection of both gram-positive and gram-negative bacteria both in vitro and in vivo while also supporting improved functional recovery of uninjured skin morphology. Coupled with the suitable mechanics, swelling capacity, and stability of the gels, the multi-mechanism antibacterial properties of the hydrogels offer promise for treating or preventing infections of burn wounds.

authors

  • Xu, Fei
  • Cudmore, Evelyn
  • Walji, Sadru-Dean
  • Zhang, Lei
  • Kostashuk, Meghan
  • Jun, Isabella
  • Randhawa, Gurpreet
  • Pan, Zhicheng
  • Hoare, Todd Ryan

publication date

  • March 6, 2025