Miniaturization of an enclosed electrospinning process to enhance reproducibility in the fabrication of rapidly dissolving cell‐based biosensors Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractThere is broad interest in producing electrospun films embedded with biological materials. It is well known that electrospinning requires careful control of the process conditions, especially the environmental conditions such as relative humidity (RH). Given that commercial electrospinning systems are expensive (> $10,000) and are typically too large to be used in standard biological safety cabinets (BSC), we designed and built a miniaturized electrospinning box (E‐Box) that will fit inside a BSC, and the RH can be easily controlled using simple instrumentation (gas cylinder, regulator, needle valve, rotameter). It uses an inexpensive computerized numerical control machine to control the spinneret positioning and collector rotational speed—all the parts for the device (except the syringe pump and voltage supply) can be purchased for approximately $1000. We demonstrate the usefulness of our design in optimizing the production of Escherichia coli‐embedded pullulan‐trehalose films to be used as rapidly dissolving biosensors for environmental monitoring. At a fixed electrospinning recipe, we showed that decreasing the RH from approximately 48% to 22% resulted in the average fiber diameter increasing from 240 (± 11) nm to 314 (± 8) nm. We also demonstrate the usefulness of our design in performing sequential electrospinning experiments to evaluate process performance reproducibility. For example, from just 1 mL of a polymer solution, we produced 16 electrospun films (approximately 3 cm by 8 cm each)—from those films we hole‐punched approximately 80 biosensor discs which were then used in subsequent experiments to determine the amount of two different biocides (Grotan BK and triclosan) in aqueous samples. The technique developed in this study is ideal for creating electrospun materials in high quantities that are highly reproducible through the precise control of RH.

publication date

  • January 2024