Severe Burn-Induced Endoplasmic Reticulum Stress and Hepatic Damage in Mice
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Severe burn injury results in liver dysfunction and damage, with subsequent metabolic derangements contributing to patient morbidity and mortality. On a cellular level, significant postburn hepatocyte apoptosis occurs and likely contributes to liver dysfunction. However, the underlying mechanisms of hepatocyte apoptosis are poorly understood. The endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) pathway can lead to hepatocyte apoptosis under conditions of liver dysfunction. Thus, we hypothesized that ER stress/UPR may mediate hepatic dysfunction in response to burn injury. We investigated the temporal activation of hepatic ER stress in mice after a severe burn injury. Mice received a scald burn over 35% of their body surface and were killed at 1, 7, 14, and 21 d postburn. We found that severe burn induces hepatocyte apoptosis as indicated by increased caspase-3 activity (P < 0.05). Serum albumin levels decreased postburn and remained lowered for up to 21 d, indicating that constitutive secretory protein synthesis was reduced. Significantly, upregulation of the ER stress markers glucose-related protein 78 (GRP78)/BIP, protein disulfide isomerase (PDI), p-protein kinase R-like endoplasmic reticulum kinase (p-PERK), and inositol-requiring enzyme 1alpha (IRE-1alpha) were found beginning 1 d postburn (P < 0.05) and persisted up to 21 d postburn (P < 0.05). Hepatic ER stress induced by burn injury was associated with compensatory upregulation of the calcium chaperone/storage proteins calnexin and calreticulin (P < 0.05), suggesting that ER calcium store depletion was the primary trigger for induction of the ER stress response. In summary, thermal injury in mice causes long-term adaptive and deleterious hepatic function alterations characterized by significant upregulation of the ER stress response.