Dysregulation of neuroendocrine crossroads: Depression, orcadian rhythms and the retina — A hypothesis Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The pathophysiology of depression and the mechanism of action of lithium and other antidepressant drugs involve alterations in circadian rhythms. These include changes in both the intrinsic rhythm of circadian oscillators and in the sensitivity of the retina to LIGHT. The retina in humans is the only photoreceptor for circadian entrainment. The retinal-hypothalamic-pineal axis is the essential pathway for neuronal entrainment of rhythms which use light as a phase cue. A common substance throughout this axis in many species is MELATONIN. Retinal melatonin has been implicated in regulation of the sensitivity of the retina to light. The hypothalamus, at THE NEUROENDOCRINE CROSSROADS, has a central role in the integration of neurotransmitters and hormones in circadian rhythms. DYSREGULATION of the hypothalamic-pituitary-adrenal, as well as -gonadal, axes has been documented in depressed patients. Abnormalities in circulating melatonin have also been found in patients with affective disorders. It is speculated that the availability of melatonin along the retinal-hypothalamic-pineal axis may have important implications in the genesis of affective disorders. More specifically--is there a latent biochemical defect which causes a phase shift and change in circadian rhythms of melatonin and/or other neurotransmitters in the retina which then alters the sensitivity of the retina to light (for the visible spectrum) which in turn desynchronizes all other biological rhythms thus disrupting mental well-being? We suggest that variations of retinal photosensitivity in humans can be measured by using a visual testing system, and that depressed patients might show changes in photosensitivity which could be corrected when treated with lithium and/or antidepressants. It is our working hypothesis that the primary defect in depression may be a change in retinal function, and that behavioural and neuroendocrine concomitants of this disorder are secondary events.

publication date

  • January 1987