Thiopurine S-methyltransferase testing for averting drug toxicity: a meta-analysis of diagnostic test accuracy Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Thiopurine S-methyltransferase (TPMT) deficiency increases the risk of serious adverse events in persons receiving thiopurines. The objective was to synthesize reported sensitivity and specificity of TPMT phenotyping and genotyping using a latent class hierarchical summary receiver operating characteristic meta-analysis. In 27 studies, pooled sensitivity and specificity of phenotyping for deficient individuals was 75.9% (95% credible interval (CrI), 58.3-87.0%) and 98.9% (96.3-100%), respectively. For genotype tests evaluating TPMT*2 and TPMT*3, sensitivity and specificity was 90.4% (79.1-99.4%) and 100.0% (99.9-100%), respectively. For individuals with deficient or intermediate activity, phenotype sensitivity and specificity was 91.3% (86.4-95.5%) and 92.6% (86.5-96.6%), respectively. For genotype tests evaluating TPMT*2 and TPMT*3, sensitivity and specificity was 88.9% (81.6-97.5%) and 99.2% (98.4-99.9%), respectively. Genotyping has higher sensitivity as long as TPMT*2 and TPMT*3 are tested. Both approaches display high specificity. Latent class meta-analysis is a useful method for synthesizing diagnostic test performance data for clinical practice guidelines.The Pharmacogenomics Journal advance online publication, 24 May 2016; doi:10.1038/tpj.2016.37.

publication date

  • August 2016

has subject area