Unraveling the Supramolecular Structure and Nanoscale Dislocations of Bacterial Cellulose Ribbons Using Correlative Super-Resolution Light and Electron Microscopy Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Cellulose is a structural linear polysaccharide that is naturally produced by plants and bacteria, making it the most abundant biopolymer on Earth. The hierarchical structure of cellulose from the nano- to microscale is intimately linked to its biosynthesis and the ability to process this sustainable resource for materials applications. Despite this, the morphology of bacterial cellulose microfibrils and their assembly into higher order structures, as well as the structural origins of the alternating crystalline and disordered supramolecular structure of cellulose, have remained elusive. In this work, we employed high-resolution transmission electron and atomic force microscopies to study the morphology of bacterial cellulose ribbons at different levels of its structural hierarchy and provide direct visualization of nanometer-wide microfibrils. The non-persistent twisting of cellulose ribbons was characterized in detail, and we found that twists are associated with nanostructural defects at the bundle and microfibril levels. To investigate the structural origins of the persistent disordered regions that are present along cellulose ribbons, we employed a correlative super-resolution light and electron microscopy workflow and observed that the disordered regions that can be seen in super-resolution fluorescence microscopy largely correlated with the ribbon twisting observed in electron microscopy. Unraveling the hierarchical assembly of bacterial cellulose and the ultrastructural basis of its disordered regions provides insights into its biosynthesis and susceptibility to hydrolysis. These findings are important to understand the cell-directed assembly of cellulose, develop new cellulose-based nanomaterials, and develop more efficient biomass conversion strategies.

publication date

  • January 9, 2023